skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lauter, Kristin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In supersingular isogeny-based cryptography, the path-finding problem reduces to the endomorphism ring problem. Can path-finding be reduced to knowing just one endomorphism? It is known that a small degree endomorphism enables polynomial-time path-finding and endomorphism ring computation (in: Love and Boneh, ANTS XIV-Proceedings of the Fourteenth Algorithmic Number Theory Symposium, volume 4 of Open Book Ser. Math. Sci. Publ., Berkeley, 2020). An endomorphism gives an explicit orientation of a supersingular elliptic curve. In this paper, we use the volcano structure of the oriented supersingular isogeny graph to take ascending/descending/horizontal steps on the graph and deduce path-finding algorithms to an initial curve. Each altitude of the volcano corresponds to a unique quadratic order, called the primitive order. We introduce a new hard problem of computing the primitive order given an arbitrary endomorphism on the curve, and we also provide a sub-exponential quantum algorithm for solving it. In concurrent work (in: Wesolowski, Advances in cryptology-EUROCRYPT 2022, volume 13277 of Lecture Notes in Computer Science. Springer, Cham, 2022), it was shown that the endomorphism ring problem in the presence of one endomorphism with known primitive order reduces to a vectorization problem, implying path-finding algorithms. Our path-finding algorithms are more general in the sense that we don’t assume the knowledge of the primitive order associated with the endomorphism. 
    more » « less
  2. Abstract We describe a framework for constructing an efficient non-interactive key exchange (NIKE) protocol for n parties for any n ≥ 2. Our approach is based on the problem of computing isogenies between isogenous elliptic curves, which is believed to be difficult. We do not obtain a working protocol because of a missing step that is currently an open mathematical problem. What we need to complete our protocol is an efficient algorithm that takes as input an abelian variety presented as a product of isogenous elliptic curves, and outputs an isomorphism invariant of the abelian variety. Our framework builds a cryptographic invariant map , which is a new primitive closely related to a cryptographic multilinear map, but whose range does not necessarily have a group structure. Nevertheless, we show that a cryptographic invariant map can be used to build several cryptographic primitives, including NIKE, that were previously constructed from multilinear maps and indistinguishability obfuscation. 
    more » « less